定價:NT$ 1000
優惠價:95 折,NT$ 950
本商品已絕版
用 Python + Keras 實踐深度學習, 解開神經網路模型的黑盒子
在高階函式庫 Keras 的幫助下, 用 6 行程式就可寫一隻深度學習神經網路的程式, 建構深度學習模型就像玩樂高積木一樣, 可以輕易將各種神經網路組合在一起, 而每一種模型可用來解決不同的問題。
正宗 Keras 大神著作,正體中文版重磅登場
本書為 Keras 之父 François Chollet 親自撰寫, 詳細解說神經網路每一層的架構與原理, 並不時提供個人經驗累積而成的真知灼見, 帶領讀者熟悉機器學習的標準工作流程, 並了解如何使用 Keras 解決從電腦視覺到自然語言處理的各種實務問題, 例如圖像分類、時間序列預測、情感分析、圖像和文字資料的生成...等, 最有效率實作出可用的模型, 絕對是機器學習、資料科學、人工智慧從業人員必讀的經典之作。
最後引述 François Chollet 在書中所說:深度學習並不難, 只是又多又雜, 這本書就是希望能夠提供更多人瞭解深度學習的第一步。這不表示我們會把複雜的內容簡化 (因為這些都是深度學習所必需的), 而是希望各位不要擔心深度學習太過於困難而裹足不前。希望你能夠發現本書的價值, 並跟著本書逐步建構屬於你的人工智慧應用程式。
本書特色:
本書由施威銘研究室 監修, 書中會針對原書所提及的背景知識做補充, 所有程式均經過實際執行測試, 並適當添加註解與程式碼, 幫助讀者能更加理解程式內容。
■ CNN – 用於電腦視覺的深度學習
■ RNN – 用於文字與序列資料的深度學習
■ LSTM、VAE 與 DeepDream
■ 神經風格轉換
■ GAN 生成對抗神經網路
■ 機器學習與神經網路
■ 張量 Tensor 與張量運算
■ Keras API、callbacks 與 TensorBoard
■ 超參數優化與模型集成
本書相關資源網頁如下, 請登錄下載範例程式及 Bonus:
http://www.flag.com.tw/bk/t/f9379
也歡迎加入本書社群, 和技術者們直接對話!
「從做中學 Learning by doing」粉絲專頁
(https://www.facebook.com/flaglearningbydoing/)
作者簡介:
作者 François Chollet 為 Keras 之父, 是 Keras 函式庫的創始者, 也是 TensorFlow 機器學習框架的貢獻者, 目前任職於 Google 深度學習小組, 公認為全球 AI 人工智慧領域的權威之一, 也經常在社群媒體針對 AI 或機器學習技術發表前瞻性的看法。
作者同時也是一名知名學者, 主要研究方向為電腦視覺和機器學習在正規推理中的應用, 其論文時常發表於該領域的主要學術會議上, 包括 電腦視覺和模式識別會議(Conference on Computer Vision and Pattern Recognition, CVPR)、神經資訊處理系統研討會(Conference and Workshop on Neural Information Processing System, NIPS)、國際學習表示法會議(International Conference on Learning Representations, ICLR),與其他重要學術會議上。
退換貨說明:
會員均享有10天的商品猶豫期(含例假日)。若您欲辦理退換貨,請於取得該商品10日內寄回。
辦理退換貨時,請保持商品全新狀態與完整包裝(商品本身、贈品、贈票、附件、內外包裝、保證書、隨貨文件等)一併寄回。若退回商品無法回復原狀者,可能影響退換貨權利之行使或須負擔部分費用。
訂購本商品前請務必詳閱退換貨原則。最多人成交
平均成交價57折573元
最近成交價(折扣)
徵求價 | 數量 |
2折 | 2 |
3折 | 3 |
4折 | 1 |
5折 | 12 |
6折 | 5 |
7折 | 5 |
8折以上 | 3 |
影片僅供參考,實物可能因再版或再刷而有差異
優惠價: 95 折, NT$ 950 NT$ 1000
本商品已絕版
用 Python + Keras 實踐深度學習, 解開神經網路模型的黑盒子
在高階函式庫 Keras 的幫助下, 用 6 行程式就可寫一隻深度學習神經網路的程式, 建構深度學習模型就像玩樂高積木一樣, 可以輕易將各種神經網路組合在一起, 而每一種模型可用來解決不同的問題。
正宗 Keras 大神著作,正體中文版重磅登場
本書為 Keras 之父 François Chollet 親自撰寫, 詳細解說神經網路每一層的架構與原理, 並不時提供個人經驗累積而成的真知灼見, 帶領讀者熟悉機器學習的標準工作流程, 並了解如何使用 Keras 解決從電腦視覺到自然語言處理的各種實務問題, 例如圖像分類、時間序列預測、情感分析、圖像和文字資料的生成...等, 最有效率實作出可用的模型, 絕對是機器學習、資料科學、人工智慧從業人員必讀的經典之作。
最後引述 François Chollet 在書中所說:深度學習並不難, 只是又多又雜, 這本書就是希望能夠提供更多人瞭解深度學習的第一步。這不表示我們會把複雜的內容簡化 (因為這些都是深度學習所必需的), 而是希望各位不要擔心深度學習太過於困難而裹足不前。希望你能夠發現本書的價值, 並跟著本書逐步建構屬於你的人工智慧應用程式。
本書特色:
本書由施威銘研究室 監修, 書中會針對原書所提及的背景知識做補充, 所有程式均經過實際執行測試, 並適當添加註解與程式碼, 幫助讀者能更加理解程式內容。
■ CNN – 用於電腦視覺的深度學習
■ RNN – 用於文字與序列資料的深度學習
■ LSTM、VAE 與 DeepDream
■ 神經風格轉換
■ GAN 生成對抗神經網路
■ 機器學習與神經網路
■ 張量 Tensor 與張量運算
■ Keras API、callbacks 與 TensorBoard
■ 超參數優化與模型集成
本書相關資源網頁如下, 請登錄下載範例程式及 Bonus:
http://www.flag.com.tw/bk/t/f9379
也歡迎加入本書社群, 和技術者們直接對話!
「從做中學 Learning by doing」粉絲專頁
(https://www.facebook.com/flaglearningbydoing/)
作者簡介:
作者 François Chollet 為 Keras 之父, 是 Keras 函式庫的創始者, 也是 TensorFlow 機器學習框架的貢獻者, 目前任職於 Google 深度學習小組, 公認為全球 AI 人工智慧領域的權威之一, 也經常在社群媒體針對 AI 或機器學習技術發表前瞻性的看法。
作者同時也是一名知名學者, 主要研究方向為電腦視覺和機器學習在正規推理中的應用, 其論文時常發表於該領域的主要學術會議上, 包括 電腦視覺和模式識別會議(Conference on Computer Vision and Pattern Recognition, CVPR)、神經資訊處理系統研討會(Conference and Workshop on Neural Information Processing System, NIPS)、國際學習表示法會議(International Conference on Learning Representations, ICLR),與其他重要學術會議上。
退換貨說明:
會員均享有10天的商品猶豫期(含例假日)。若您欲辦理退換貨,請於取得該商品10日內寄回。
辦理退換貨時,請保持商品全新狀態與完整包裝(商品本身、贈品、贈票、附件、內外包裝、保證書、隨貨文件等)一併寄回。若退回商品無法回復原狀者,可能影響退換貨權利之行使或須負擔部分費用。
訂購本商品前請務必詳閱退換貨原則。徵求價 | 數量 |
2折 | 2 |
3折 | 3 |
4折 | 1 |
5折 | 12 |
6折 | 5 |
7折 | 5 |
8折以上 | 3 |
最多人成交
平均成交價57折573元
最近成交價(折扣)
請在手機上開啟Line應用程式,點選搜尋欄位旁的掃描圖示
即可掃描此ORcode