
收藏
定價:NT$ 680
優惠價:79 折,NT$ 537
優惠截止日:至2026年02月25日
運送方式:超商取貨、宅配取貨
銷售地區:全球
訂購後,立即為您進貨
內容簡介:🏆 Amazone 讀者5星好評 ⭐⭐⭐⭐⭐
🏆 微軟前總經理Shelia Gulati、Hugging Face首席倫理長 Giada Pistilli等業界領袖一致推薦!
「本書平衡了開源模型和閉源模型的潛力,鉅細靡遺地帶你瞭解和使用LLM,縮短理論概念和實際應用之間的距離。」—— Giada Pistilli ,Hugging Face 首席倫理長
「Ozdemir 的這本書為讀者破除重重迷霧,說明LLM 革命的起源,以及未來的發展方向。他將複雜主題拆解為實用的說明,和容易理解的範例程式。」
--Shelia Gulati, 微軟前總經理,Tola Capital現任常務董事
「本書是令人耳目一新並引發靈感的學習資源,充滿了實用的指導和清楚的講解,幫助你更瞭解這個奇妙的新領域。」
—PETE HUANG, author of The Neuron
🎯 想深入掌握LLM核心技術
🎯 想成為生成式AI應用的開發者
🎯 想在真實場景運用LLM解決問題
那你絕對不能錯過本書!
大型語言模型正以驚人的速度改變我們的工作與生活。無論是開發者、企業領袖,還是對AI有興趣的學習者,本書將引領你踏入這個革命性的領域。
🚩 完整拆解LLM核心技術— 從預訓練到微調,帶你輕鬆掌握關鍵概念原理。
🚩 實例操作直擊應用— 透過真實案例場景,運用最新工具和技術,快速上手專案開發。
🚩 開源與商用模型全解析— 精選LLM工具與資源,選擇最適切的解決方案。
這本實用的指南將逐步指導你在專案和產品中大規模地使用LLM。
Llama 3、Claude 3與GPT等大型語言模型(LLM)已展示驚人的實力,但它們的規模和複雜度,卻讓很多從業者望而卻步。創新的資料科學家暨AI企業家Sinan Ozdemir在本書第二版為你排除這些障礙,教你如何使用、整合和部署LLM來解決實際的問題。
Ozdemir把入門所需的知識整合起來,即使是沒有直接用過LLM的讀者也能輕鬆上手,本書內容包括逐步引導、最佳做法、真實案例研究、動手練習…等。在過程中,他也會分享關於LLM內部動作的見解,以協助你優化模型的選擇、資料格式、提示工程、微調效能…等。本書的網站提供許多資源,包括範例資料集,以及使用各種開源和閉源LLM的最新程式碼,那些LLM來自OpenAI(GPT-4與GPT-3.5)、Google(BERT、T5與Gemini)、X(Grok)、Anthropic(Claude家族)、Cohere(Command 家族),以及Meta(BART與LLaMA家族)。
SINAN OZDEMIR目前是LoopGenius的創辦人與CTO,同時擔任幾家AI公司的顧問。他曾在約翰·霍普金斯大學教導資料科學,並寫了多本關於資料科學和機器學習的教科書。
此外,他也創辦了最近被收購的Kylie.ai,這是一個具備RPA能力的企業級對話AI平台。他擁有約翰·霍普金斯大學的純數學碩士學位,現居於加州舊金山。
•學習關鍵的概念:預先訓練、遷移學習、微調、注意力機制、embedding、詞元化…等等。
•使用API和Python來微調及打造LLM,以滿足需求。
•建構完整的神經/語義資訊檢索系統,並附加至對話型LLM,以進行檢索增強生成(retrieval-augmented generation,RAG)機器人及AI Agents。
•掌握進階的提示工程技術,例如輸出結構化、思維鏈提示,及少量語義範例提示。
•使用自訂的LLM embedding,從零開始建立完整的推薦引擎,並透過用戶資料來讓效能超越 OpenAI的現成embedding。
•使用開源的LLM和大型視覺資料集,從零開始建構並微調多模態Transformer架構。
•使用Reinforcement Learning from Human and AI Feedback(RLHF/RLAIF)來調校LLM,並基於Llama 3和FLAN-T5等開源模型來建立對話agent。
•將提示詞和微調過的自訂LLM部署至雲端,同時預先考慮擴展和演進流水線。
•透過量化、探測、效能評測與評估框架,來診斷與優化LLM的速度、記憶體用量及整體效能。
退換貨說明:
會員均享有10天的商品猶豫期(含例假日)。若您欲辦理退換貨,請於取得該商品10日內寄回。
辦理退換貨時,請保持商品全新狀態與完整包裝(商品本身、贈品、贈票、附件、內外包裝、保證書、隨貨文件等)一併寄回。若退回商品無法回復原狀者,可能影響退換貨權利之行使或須負擔部分費用。
訂購本商品前請務必詳閱退換貨原則。
收藏
優惠價: 79 折, NT$ 537 NT$ 680
優惠截止日:至2026年02月25日
運送方式:超商取貨、宅配取貨
銷售地區:全球
訂購後,立即為您進貨
內容簡介:🏆 Amazone 讀者5星好評 ⭐⭐⭐⭐⭐
🏆 微軟前總經理Shelia Gulati、Hugging Face首席倫理長 Giada Pistilli等業界領袖一致推薦!
「本書平衡了開源模型和閉源模型的潛力,鉅細靡遺地帶你瞭解和使用LLM,縮短理論概念和實際應用之間的距離。」—— Giada Pistilli ,Hugging Face 首席倫理長
「Ozdemir 的這本書為讀者破除重重迷霧,說明LLM 革命的起源,以及未來的發展方向。他將複雜主題拆解為實用的說明,和容易理解的範例程式。」
--Shelia Gulati, 微軟前總經理,Tola Capital現任常務董事
「本書是令人耳目一新並引發靈感的學習資源,充滿了實用的指導和清楚的講解,幫助你更瞭解這個奇妙的新領域。」
—PETE HUANG, author of The Neuron
🎯 想深入掌握LLM核心技術
🎯 想成為生成式AI應用的開發者
🎯 想在真實場景運用LLM解決問題
那你絕對不能錯過本書!
大型語言模型正以驚人的速度改變我們的工作與生活。無論是開發者、企業領袖,還是對AI有興趣的學習者,本書將引領你踏入這個革命性的領域。
🚩 完整拆解LLM核心技術— 從預訓練到微調,帶你輕鬆掌握關鍵概念原理。
🚩 實例操作直擊應用— 透過真實案例場景,運用最新工具和技術,快速上手專案開發。
🚩 開源與商用模型全解析— 精選LLM工具與資源,選擇最適切的解決方案。
這本實用的指南將逐步指導你在專案和產品中大規模地使用LLM。
Llama 3、Claude 3與GPT等大型語言模型(LLM)已展示驚人的實力,但它們的規模和複雜度,卻讓很多從業者望而卻步。創新的資料科學家暨AI企業家Sinan Ozdemir在本書第二版為你排除這些障礙,教你如何使用、整合和部署LLM來解決實際的問題。
Ozdemir把入門所需的知識整合起來,即使是沒有直接用過LLM的讀者也能輕鬆上手,本書內容包括逐步引導、最佳做法、真實案例研究、動手練習…等。在過程中,他也會分享關於LLM內部動作的見解,以協助你優化模型的選擇、資料格式、提示工程、微調效能…等。本書的網站提供許多資源,包括範例資料集,以及使用各種開源和閉源LLM的最新程式碼,那些LLM來自OpenAI(GPT-4與GPT-3.5)、Google(BERT、T5與Gemini)、X(Grok)、Anthropic(Claude家族)、Cohere(Command 家族),以及Meta(BART與LLaMA家族)。
SINAN OZDEMIR目前是LoopGenius的創辦人與CTO,同時擔任幾家AI公司的顧問。他曾在約翰·霍普金斯大學教導資料科學,並寫了多本關於資料科學和機器學習的教科書。
此外,他也創辦了最近被收購的Kylie.ai,這是一個具備RPA能力的企業級對話AI平台。他擁有約翰·霍普金斯大學的純數學碩士學位,現居於加州舊金山。
•學習關鍵的概念:預先訓練、遷移學習、微調、注意力機制、embedding、詞元化…等等。
•使用API和Python來微調及打造LLM,以滿足需求。
•建構完整的神經/語義資訊檢索系統,並附加至對話型LLM,以進行檢索增強生成(retrieval-augmented generation,RAG)機器人及AI Agents。
•掌握進階的提示工程技術,例如輸出結構化、思維鏈提示,及少量語義範例提示。
•使用自訂的LLM embedding,從零開始建立完整的推薦引擎,並透過用戶資料來讓效能超越 OpenAI的現成embedding。
•使用開源的LLM和大型視覺資料集,從零開始建構並微調多模態Transformer架構。
•使用Reinforcement Learning from Human and AI Feedback(RLHF/RLAIF)來調校LLM,並基於Llama 3和FLAN-T5等開源模型來建立對話agent。
•將提示詞和微調過的自訂LLM部署至雲端,同時預先考慮擴展和演進流水線。
•透過量化、探測、效能評測與評估框架,來診斷與優化LLM的速度、記憶體用量及整體效能。
退換貨說明:
會員均享有10天的商品猶豫期(含例假日)。若您欲辦理退換貨,請於取得該商品10日內寄回。
辦理退換貨時,請保持商品全新狀態與完整包裝(商品本身、贈品、贈票、附件、內外包裝、保證書、隨貨文件等)一併寄回。若退回商品無法回復原狀者,可能影響退換貨權利之行使或須負擔部分費用。
訂購本商品前請務必詳閱退換貨原則。
請在手機上開啟Line應用程式,點選搜尋欄位旁的掃描圖示
即可掃描此ORcode

