定價:NT$ 720
優惠價:9 折,NT$ 648
運送方式:超商取貨、宅配取貨
銷售地區:全球
即時庫存=1
☆最流行的AIGC技術介紹
☆Diffusion Model的基礎
☆擴散模型的高效採樣
☆擴散模型的似然最大化
☆將擴散模型應用於具有特殊結構的資料
☆擴散模型與其他生成模型的連結
☆擴散模型的應用
☆GPT及大型語言模型
人工智慧創造內容的浪潮已來臨,其中包括兩項關鍵技術:大模型技術(如ChatGPT)和擴散模型技術(如Midjourney等AI繪畫)。這些技術背後的深度生成模型可以根據現有資料和程式生成新資料。在現實世界中,資料通常維度高、分佈複雜,尤其是圖像資料,它們在二維空間中的像素點之間存在著複雜的互動關係。這對傳統模型擬合資料分佈提出了挑戰。人們希望AI生成的內容既真實又新穎,不僅是複製既有內容。擴散模型能夠捕捉複雜的資料分佈,產生真實且創新的內容,並實現高效的個性化生產,因此受到廣泛關注。本書為少數從理論及實作上都兼顧的教材,對當今AI狂潮席捲的新時代來說,不想被AI取代的你,這本書是最好的起點。
本書介紹了許多當今重要擴散模型的技術,第1章介紹AIGC與相關技術,第2章從三個角度介紹擴散模型的基本理論、演算法,此外介紹了擴散模型的神經網路架構和程式實踐。第3章、第4章、第5章分別從擴散模型的高效採樣、擴散模型的似然最大化、將擴散模型應用於具有特殊結構的資料三個方面系統介紹擴散模型的特點,以及後續的改進工作。第6章討論了擴散模型與其他生成模型的連結,包括變分自編碼器、生成對抗網路、歸一化流、自回歸模型和基於能量的模型。第7章介紹了擴散模型的應用。第8章討論了擴散模型的未來——GPT及和大型語言模型。
作者簡介:
楊靈
北京大學博士在讀,研究興趣是機器學習和生成式AI,作為第一作者在ICML、CVPR等人工智慧頂會、頂刊發表過多篇論文,長期擔任TPAMI、ICML、NeurIPS、CVPR、KDD、AAAI等多個頂級學術會議或期刊的程式委員會成員、審稿人。現與OpenAI、史丹佛大學等AI研究機構進行長期的科研合作。曾獲北京大學國家獎學金、學術創新獎、三好學生等獎項。
張至隆
北京大學碩士在讀,本科畢業於北京大學數學科學學院,研究興趣是擴散模型。曾獲北京大學國琴獎學金、優秀畢業生、三好學生等獎項。
張文濤
蒙特利爾學習演算法研究所(Mila)博士後研究員。博士畢業於北京大學電腦學院,師從崔斌教授。研究興趣為大規模圖學習,作為第一作者在機器學習、資料採擷和資料庫等領域發表論文10餘篇。曾獲Apple PhD Fellowship、WAIC雲帆獎和北京大學優秀博士學位論文等獎項。
崔斌
北京大學電腦學院教授、博士生導師、北京大學電腦學院副院長。擔任中國電腦學會資料庫專委會副主任,VLDB理事會理事,IEEE TKDE、VLDB Journal、DAPD等國際期刊編委。中國電腦學會傑出會員、IEEE高級會員、ACM會員,2016年入選教育部長江學者特聘教授。
退換貨說明:
會員均享有10天的商品猶豫期(含例假日)。若您欲辦理退換貨,請於取得該商品10日內寄回。
辦理退換貨時,請保持商品全新狀態與完整包裝(商品本身、贈品、贈票、附件、內外包裝、保證書、隨貨文件等)一併寄回。若退回商品無法回復原狀者,可能影響退換貨權利之行使或須負擔部分費用。
訂購本商品前請務必詳閱退換貨原則。
優惠價: 9 折, NT$ 648 NT$ 720
運送方式:超商取貨、宅配取貨
銷售地區:全球
即時庫存=1
☆最流行的AIGC技術介紹
☆Diffusion Model的基礎
☆擴散模型的高效採樣
☆擴散模型的似然最大化
☆將擴散模型應用於具有特殊結構的資料
☆擴散模型與其他生成模型的連結
☆擴散模型的應用
☆GPT及大型語言模型
人工智慧創造內容的浪潮已來臨,其中包括兩項關鍵技術:大模型技術(如ChatGPT)和擴散模型技術(如Midjourney等AI繪畫)。這些技術背後的深度生成模型可以根據現有資料和程式生成新資料。在現實世界中,資料通常維度高、分佈複雜,尤其是圖像資料,它們在二維空間中的像素點之間存在著複雜的互動關係。這對傳統模型擬合資料分佈提出了挑戰。人們希望AI生成的內容既真實又新穎,不僅是複製既有內容。擴散模型能夠捕捉複雜的資料分佈,產生真實且創新的內容,並實現高效的個性化生產,因此受到廣泛關注。本書為少數從理論及實作上都兼顧的教材,對當今AI狂潮席捲的新時代來說,不想被AI取代的你,這本書是最好的起點。
本書介紹了許多當今重要擴散模型的技術,第1章介紹AIGC與相關技術,第2章從三個角度介紹擴散模型的基本理論、演算法,此外介紹了擴散模型的神經網路架構和程式實踐。第3章、第4章、第5章分別從擴散模型的高效採樣、擴散模型的似然最大化、將擴散模型應用於具有特殊結構的資料三個方面系統介紹擴散模型的特點,以及後續的改進工作。第6章討論了擴散模型與其他生成模型的連結,包括變分自編碼器、生成對抗網路、歸一化流、自回歸模型和基於能量的模型。第7章介紹了擴散模型的應用。第8章討論了擴散模型的未來——GPT及和大型語言模型。
作者簡介:
楊靈
北京大學博士在讀,研究興趣是機器學習和生成式AI,作為第一作者在ICML、CVPR等人工智慧頂會、頂刊發表過多篇論文,長期擔任TPAMI、ICML、NeurIPS、CVPR、KDD、AAAI等多個頂級學術會議或期刊的程式委員會成員、審稿人。現與OpenAI、史丹佛大學等AI研究機構進行長期的科研合作。曾獲北京大學國家獎學金、學術創新獎、三好學生等獎項。
張至隆
北京大學碩士在讀,本科畢業於北京大學數學科學學院,研究興趣是擴散模型。曾獲北京大學國琴獎學金、優秀畢業生、三好學生等獎項。
張文濤
蒙特利爾學習演算法研究所(Mila)博士後研究員。博士畢業於北京大學電腦學院,師從崔斌教授。研究興趣為大規模圖學習,作為第一作者在機器學習、資料採擷和資料庫等領域發表論文10餘篇。曾獲Apple PhD Fellowship、WAIC雲帆獎和北京大學優秀博士學位論文等獎項。
崔斌
北京大學電腦學院教授、博士生導師、北京大學電腦學院副院長。擔任中國電腦學會資料庫專委會副主任,VLDB理事會理事,IEEE TKDE、VLDB Journal、DAPD等國際期刊編委。中國電腦學會傑出會員、IEEE高級會員、ACM會員,2016年入選教育部長江學者特聘教授。
退換貨說明:
會員均享有10天的商品猶豫期(含例假日)。若您欲辦理退換貨,請於取得該商品10日內寄回。
辦理退換貨時,請保持商品全新狀態與完整包裝(商品本身、贈品、贈票、附件、內外包裝、保證書、隨貨文件等)一併寄回。若退回商品無法回復原狀者,可能影響退換貨權利之行使或須負擔部分費用。
訂購本商品前請務必詳閱退換貨原則。請在手機上開啟Line應用程式,點選搜尋欄位旁的掃描圖示
即可掃描此ORcode