作者:王喆
3收藏
定價:NT$ 780
二手價:62 折,NT$ 484

運送方式:超商取貨、宅配取貨
銷售地區:全球
市面難尋商品,即時庫存=1
推薦系統對電商的重要性好比大樓的地基,在既有的商品品項上創造更大的利潤一直是演算法工程師深度挖掘的目標。深度學習早就跳出CV和NLP的範疇,進而分析購買行為。本書不但深入介紹了DNN,更將序列資料中最重要的Embedding包含進來,進而介紹各大巨頭的推薦系統,包括了特徵工程、注意力機制等,也說明了Youtube、Facebook、阿里巴巴等推薦系統的原理介紹,全書還使用了Spark MLlib來分析幾個案例,讓平凡百姓也能一窺矽谷等級實作的精彩內容。
✤ 本書特色
本書希望討論的是推薦系統相關的「經典的」或「前端的」技術內容。其中注重討論的是深度學習在推薦系統業界的應用。需要明確的是,本書不是一本機器學習或深度學習的入門書,雖然書中會穿插機器學習基礎知識的介紹,但絕大多數內容建立在讀者有一定的機器學習基礎上;本書也不是一本純理論書籍,而是一本從工程師的實際經驗角度出發,介紹深度學習在推薦系統領域的應用方法,以及推薦系統相關的業界前端知識的技術書。
✤ 本書讀者群
本書的目標讀者可分為兩種:
一種是網際網路企業相關方向,特別是推薦、廣告、搜尋領域的從業者。希望這些同行能夠透過學習本書熟悉深度學習推薦系統的發展脈絡,釐清每個關鍵模型和技術的細節,進而在工作中應用甚至改進這些技術點。另一種是有一定機器學習基礎,希望進入推薦系統領域的同好、在校學生。本書儘量用平實的語言,從細節出發,介紹推薦系統技術的相關原理和應用方法,幫助讀者從零開始建置前端、實用的推薦系統知識系統。
作者簡介:
王喆
畢業於清華大學計算機科學與技術系,美國流媒體公司Roku資深機器學習工程師,推薦系統架構負責人。
曾任Hulu高級研究工程師,品友互動廣告效果算法組負責人。
清華大學KEG實驗室學術搜索引擎AMiner早期發起人之一。
主要研究方向為推薦系統、計算廣告、個性化搜索,發表相關領域學術論文7篇,擁有專利3項,是《百面機器學習:算法工程師帶你去面試》等技術書的聯合作者。
曾擔任KDD、CIKM等國際會議審稿人。
關於二手書說明:
商品建檔資料為新書及二手書共用,因是二手商品,實際狀況可能已與建檔資料有差異,購買二手書時,請務必檢視商品書況、備註說明及書況影片,收到商品將以書況影片內呈現為準。若有差異時僅可提供退貨處理,無法換貨或再補寄。
商品版權法律說明:
TAAZE 單純提供網路二手書託售平台予消費者,並不涉入書本作者與原出版商間之任何糾紛;敬請各界鑒察。
退換貨說明:
二手書籍商品享有10天的商品猶豫期(含例假日)。若您欲辦理退貨,請於取得該商品10日內寄回。
二手影音商品(例如CD、DVD等),恕不提供10天猶豫期退貨。
二手商品無法提供換貨服務,僅能辦理退貨。如須退貨,請保持該商品及其附件的完整性(包含書籍封底之TAAZE物流條碼)。若退回商品無法回復原狀者,可能影響退換貨權利之行使或須負擔部分費用。
訂購本商品前請務必詳閱退換貨原則、二手CD、DVD退換貨說明。作者:王喆
3收藏
二手價:62 折,NT$ 484 NT$ 780

運送方式:超商取貨、宅配取貨
銷售地區:全球
市面難尋商品,即時庫存=1
推薦系統對電商的重要性好比大樓的地基,在既有的商品品項上創造更大的利潤一直是演算法工程師深度挖掘的目標。深度學習早就跳出CV和NLP的範疇,進而分析購買行為。本書不但深入介紹了DNN,更將序列資料中最重要的Embedding包含進來,進而介紹各大巨頭的推薦系統,包括了特徵工程、注意力機制等,也說明了Youtube、Facebook、阿里巴巴等推薦系統的原理介紹,全書還使用了Spark MLlib來分析幾個案例,讓平凡百姓也能一窺矽谷等級實作的精彩內容。
✤ 本書特色
本書希望討論的是推薦系統相關的「經典的」或「前端的」技術內容。其中注重討論的是深度學習在推薦系統業界的應用。需要明確的是,本書不是一本機器學習或深度學習的入門書,雖然書中會穿插機器學習基礎知識的介紹,但絕大多數內容建立在讀者有一定的機器學習基礎上;本書也不是一本純理論書籍,而是一本從工程師的實際經驗角度出發,介紹深度學習在推薦系統領域的應用方法,以及推薦系統相關的業界前端知識的技術書。
✤ 本書讀者群
本書的目標讀者可分為兩種:
一種是網際網路企業相關方向,特別是推薦、廣告、搜尋領域的從業者。希望這些同行能夠透過學習本書熟悉深度學習推薦系統的發展脈絡,釐清每個關鍵模型和技術的細節,進而在工作中應用甚至改進這些技術點。另一種是有一定機器學習基礎,希望進入推薦系統領域的同好、在校學生。本書儘量用平實的語言,從細節出發,介紹推薦系統技術的相關原理和應用方法,幫助讀者從零開始建置前端、實用的推薦系統知識系統。
作者簡介:
王喆
畢業於清華大學計算機科學與技術系,美國流媒體公司Roku資深機器學習工程師,推薦系統架構負責人。
曾任Hulu高級研究工程師,品友互動廣告效果算法組負責人。
清華大學KEG實驗室學術搜索引擎AMiner早期發起人之一。
主要研究方向為推薦系統、計算廣告、個性化搜索,發表相關領域學術論文7篇,擁有專利3項,是《百面機器學習:算法工程師帶你去面試》等技術書的聯合作者。
曾擔任KDD、CIKM等國際會議審稿人。
關於二手書說明:
商品建檔資料為新書及二手書共用,因是二手商品,實際狀況可能已與建檔資料有差異,購買二手書時,請務必檢視商品書況、備註說明及書況影片,收到商品將以書況影片內呈現為準。若有差異時僅可提供退貨處理,無法換貨或再補寄。
商品版權法律說明:
TAAZE 單純提供網路二手書託售平台予消費者,並不涉入書本作者與原出版商間之任何糾紛;敬請各界鑒察。
退換貨說明:
二手書籍商品享有10天的商品猶豫期(含例假日)。若您欲辦理退貨,請於取得該商品10日內寄回。
二手影音商品(例如CD、DVD等),恕不提供10天猶豫期退貨。
二手商品無法提供換貨服務,僅能辦理退貨。如須退貨,請保持該商品及其附件的完整性(包含書籍封底之TAAZE物流條碼)。若退回商品無法回復原狀者,可能影響退換貨權利之行使或須負擔部分費用。
訂購本商品前請務必詳閱退換貨原則、二手CD、DVD退換貨說明。
※ 二手徵求後,有綁定line通知的讀者,
該二手書結帳減2元。(減2元可累加)
請在手機上開啟Line應用程式,點選搜尋欄位旁的掃描圖示
即可掃描此ORcode
|
||||||||||||||||||
|
||||||||||||||||||
|
||||||||||||||||||


