作者:陳柏翰
1收藏
定價:NT$ 600
優惠價: 88 折, NT$ 528
運送方式:超商取貨、宅配取貨
銷售地區:全球
即時庫存=2
從概念到實作,全方位掌握 RAG 與 LangChain
精準打造你的專屬 AI 系統!
本書改編自第16屆 iThome 鐵人賽生成式 AI 組優選系列文章《初探 LangChain 與 LLM:打造簡易問診機器人》,完整收錄生成式 AI、大型語言模型(LLM)與檢索增強生成(RAG)的核心觀念與技術細節。
書中首先帶領讀者認識生成式 AI 與 LLM 的重要觀念,深入探討模型常見的幻覺問題與即時知識更新的難點,並逐步引導讀者學習 RAG 架構如何有效克服這些挑戰。接著,以詳細且易懂的步驟說明環境建置方法,包括 Python、PyCharm、OpenAI API 及 MongoDB Atlas 的設定,確保讀者能快速架設並應用於實務專案。
此外,書中透過實際案例「智慧問診機器人」專案的完整演練,全面介紹 LangChain 框架的基礎到進階操作技巧,並深入說明如何評估與測試系統效能,運用 DeepEval 及 LLM as a Judge 等工具進行成效驗證,幫助讀者掌握 RAG 系統的實務與優化策略,快速提升實戰能力。
無論你是初次接觸生成式 AI 的新手,或希望深度實作 RAG 技術的進階讀者,本書將引導你扎實地掌握理論基礎與技術細節,輕鬆建立屬於自己的高效能智慧應用系統。
重點摘要
✦ 理論基礎
深入淺出 RAG 核心觀念
✦ 環境架設
從開發到部署一本搞定
✦ 實務專案
採用貼近生活的問診系統實戰演練
✦ 效能評估
開發同時也關注模型回答的表現
目標讀者
.對生成式 AI 有興趣的讀者
.具備基礎 Python 知識的讀者
.期望理解 RAG 系統的人士
.想要了解如何評估 RAG 表現的開發者
專業推薦
本書以教學導向的內容,帶領讀者認識生成式 AI、大型語言模型(LLM)與 RAG(檢索增強生成)的基本概念與架構,進而透過實際操作與範例,理解 LangChain 框架的開發實務,以及向量資料庫在知識檢索中的關鍵角色;並經由智慧問診機器人實作演練,讓讀者學習如何建構一個能實務運作的智慧化系統,同時介紹提升 RAG 系統準確度的建議作法。我誠摯推薦本書給每一位希望從基礎出發,穩健踏入 LLM 與 RAG 實作領域的讀者。相信本書不只會協助您建立知識架構,更會為後續的學習與應用打下良好的基礎。
──── 呂奇傑|輔仁大學資訊管理學系 特聘教授
作者簡介:
陳柏翰
現職生成式 AI 及資料工程師,專長於Python程式語言、知識型問答系統(RAG,Retrieval-Augmented Generation),以及企業級 AI 應用的落地實作。擁有多年軟體開發、資料科學與機器學習專案經驗,長期投身於人工智慧產業應用與創新教學,並活躍於技術社群、學術研究與專業寫作領域。
目前就讀於輔仁大學資訊管理碩士在職專班,曾於網通產業、數位科技新創等不同型態企業服務,參與過多項結合 NLP 與資料工程的大型專案,涵蓋智慧客服、智能醫療諮詢、文件搜尋與自動化知識問答等應用場域。深諳 Python、Django、LangChain、OpenAI API、Docker、PostgreSQL、MongoDB 等主流技術,亦積極參與新一代 AI 工具在企業環境中的最佳實踐推廣。
除了專業領域的投入,也善於觀察生活、反思科技與人之間的關係。因此在書寫風格上,力求兼顧專業嚴謹與易讀親和,讓更多初學者、工程師與決策者都能從中找到啟發,真正落實「人人都能用 AI 提升數據力」的願景。
退換貨說明:
會員均享有10天的商品猶豫期(含例假日)。若您欲辦理退換貨,請於取得該商品10日內寄回。
辦理退換貨時,請保持商品全新狀態與完整包裝(商品本身、贈品、贈票、附件、內外包裝、保證書、隨貨文件等)一併寄回。若退回商品無法回復原狀者,可能影響退換貨權利之行使或須負擔部分費用。
訂購本商品前請務必詳閱退換貨原則。作者:陳柏翰
1收藏
優惠價: 88 折, NT$ 528 NT$ 600
運送方式:超商取貨、宅配取貨
銷售地區:全球
即時庫存=2
從概念到實作,全方位掌握 RAG 與 LangChain
精準打造你的專屬 AI 系統!
本書改編自第16屆 iThome 鐵人賽生成式 AI 組優選系列文章《初探 LangChain 與 LLM:打造簡易問診機器人》,完整收錄生成式 AI、大型語言模型(LLM)與檢索增強生成(RAG)的核心觀念與技術細節。
書中首先帶領讀者認識生成式 AI 與 LLM 的重要觀念,深入探討模型常見的幻覺問題與即時知識更新的難點,並逐步引導讀者學習 RAG 架構如何有效克服這些挑戰。接著,以詳細且易懂的步驟說明環境建置方法,包括 Python、PyCharm、OpenAI API 及 MongoDB Atlas 的設定,確保讀者能快速架設並應用於實務專案。
此外,書中透過實際案例「智慧問診機器人」專案的完整演練,全面介紹 LangChain 框架的基礎到進階操作技巧,並深入說明如何評估與測試系統效能,運用 DeepEval 及 LLM as a Judge 等工具進行成效驗證,幫助讀者掌握 RAG 系統的實務與優化策略,快速提升實戰能力。
無論你是初次接觸生成式 AI 的新手,或希望深度實作 RAG 技術的進階讀者,本書將引導你扎實地掌握理論基礎與技術細節,輕鬆建立屬於自己的高效能智慧應用系統。
重點摘要
✦ 理論基礎
深入淺出 RAG 核心觀念
✦ 環境架設
從開發到部署一本搞定
✦ 實務專案
採用貼近生活的問診系統實戰演練
✦ 效能評估
開發同時也關注模型回答的表現
目標讀者
.對生成式 AI 有興趣的讀者
.具備基礎 Python 知識的讀者
.期望理解 RAG 系統的人士
.想要了解如何評估 RAG 表現的開發者
專業推薦
本書以教學導向的內容,帶領讀者認識生成式 AI、大型語言模型(LLM)與 RAG(檢索增強生成)的基本概念與架構,進而透過實際操作與範例,理解 LangChain 框架的開發實務,以及向量資料庫在知識檢索中的關鍵角色;並經由智慧問診機器人實作演練,讓讀者學習如何建構一個能實務運作的智慧化系統,同時介紹提升 RAG 系統準確度的建議作法。我誠摯推薦本書給每一位希望從基礎出發,穩健踏入 LLM 與 RAG 實作領域的讀者。相信本書不只會協助您建立知識架構,更會為後續的學習與應用打下良好的基礎。
──── 呂奇傑|輔仁大學資訊管理學系 特聘教授
作者簡介:
陳柏翰
現職生成式 AI 及資料工程師,專長於Python程式語言、知識型問答系統(RAG,Retrieval-Augmented Generation),以及企業級 AI 應用的落地實作。擁有多年軟體開發、資料科學與機器學習專案經驗,長期投身於人工智慧產業應用與創新教學,並活躍於技術社群、學術研究與專業寫作領域。
目前就讀於輔仁大學資訊管理碩士在職專班,曾於網通產業、數位科技新創等不同型態企業服務,參與過多項結合 NLP 與資料工程的大型專案,涵蓋智慧客服、智能醫療諮詢、文件搜尋與自動化知識問答等應用場域。深諳 Python、Django、LangChain、OpenAI API、Docker、PostgreSQL、MongoDB 等主流技術,亦積極參與新一代 AI 工具在企業環境中的最佳實踐推廣。
除了專業領域的投入,也善於觀察生活、反思科技與人之間的關係。因此在書寫風格上,力求兼顧專業嚴謹與易讀親和,讓更多初學者、工程師與決策者都能從中找到啟發,真正落實「人人都能用 AI 提升數據力」的願景。
退換貨說明:
會員均享有10天的商品猶豫期(含例假日)。若您欲辦理退換貨,請於取得該商品10日內寄回。
辦理退換貨時,請保持商品全新狀態與完整包裝(商品本身、贈品、贈票、附件、內外包裝、保證書、隨貨文件等)一併寄回。若退回商品無法回復原狀者,可能影響退換貨權利之行使或須負擔部分費用。
訂購本商品前請務必詳閱退換貨原則。
※ 二手徵求後,有綁定line通知的讀者,
該二手書結帳減2元。(減2元可累加)
請在手機上開啟Line應用程式,點選搜尋欄位旁的掃描圖示
即可掃描此ORcode
|
||||||||||||||||||
|
||||||||||||||||||
|
||||||||||||||||||

